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A Sort-based Deferred Shading Architecture for Decoupled Sampling

Petrik Clarberg Robert Toth Jacob Munkberg

Intel Corporation

Figure 1: The leftmost image shows the benefits of using stochastic rasterization for motion and defocus blur – notice, for example, the
correctly blurred/sharp reflections. However, the cost of pixel shading using multisampled antialiasing (MSAA) in current GPUs rises
substantially when blur is added (as visualized on the top right). We propose a novel graphics architecture that combines decoupled sam-
pling [Ragan-Kelley et al. 2011] with a new tiled deferred shading approach to provide very low and stable shading rates (see bottom right).
The scale ranges from 1–64 shader executions per pixel, and 16 samples/pixel were used. The scene is courtesy of Epic Games, Inc.

Abstract

Stochastic sampling in time and over the lens is essential to pro-
duce photo-realistic images, and it has the potential to revolution-
ize real-time graphics. In this paper, we take an architectural view
of the problem and propose a novel hardware architecture for ef-
ficient shading in the context of stochastic rendering. We replace
previous caching mechanisms by a sorting step to extract coher-
ence, thereby ensuring that only non-occluded samples are shaded.
The memory bandwidth is kept at a minimum by operating on tiles
and using new buffer compression methods. Our architecture has
several unique benefits not traditionally associated with deferred
shading. First, shading is performed in primitive order, which en-
ables late shading of vertex attributes and avoids the need to gen-
erate a G-buffer of pre-interpolated vertex attributes. Second, we
support state changes, e.g., change of shaders and resources in the
deferred shading pass, avoiding the need for a single über-shader.
We perform an extensive architectural simulation to quantify the
benefits of our algorithm on real workloads.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

Keywords: decoupled sampling, tiled deferred shading, stochastic
rasterization, graphics processors
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1 Introduction

In recent years, there has been a strong focus on research and devel-
opment of more power efficient graphics processors. This is driven
by the popularity of battery-operated devices (e.g., phones, tablets,
and laptops) and the introduction of very high resolution displays.
At the same time, to fulfill the ever-present goal of better visual
quality and realism, it is desirable to evolve the hardware rasteriza-
tion pipeline to natively support stochastic sampling. This would
enable accurate motion blur and depth of field [Akenine-Möller
et al. 2007] (see Figure 1), as well as many other applications [Nils-
son et al. 2012].

To make stochastic rasterization possible under the constraints of
low power consumption, it is critical to keep the rasterization, shad-
ing, and memory bandwidth costs at a minimum, for example,
through efficient hierarchical traversal [Laine et al. 2011; Munkberg
et al. 2011; Munkberg and Akenine-Möller 2012], decoupled sam-
pling of shading and visibility [Ragan-Kelley et al. 2011], and
the use of efficient buffer compression methods [Hasselgren and
Akenine-Möller 2006; Andersson et al. 2011], respectively. Nev-
ertheless, despite these recent innovations, supporting general five-
dimensional stochastic rasterization in a power-constrained device
is challenging due to its higher complexity and less coherent mem-
ory accesses than traditional non-stochastic rendering.

We propose a novel hardware architecture for efficient shading
that supports decoupled sampling [Ragan-Kelley et al. 2011]. De-
coupling the shading from visibility is a necessity for efficient
stochastic rendering, as conventional multisampling antialiasing
(MSAA) [Akeley 1993] breaks down with increased blur [McGuire
et al. 2010; Munkberg et al. 2011]. Previous state-of-the-art so-
lutions [Burns et al. 2010; Ragan-Kelley et al. 2011] have used
caching mechanisms to enable shading reuse between visibility
samples. Instead, we store a compact shading point identifier
(SPID) alongside each visibility sample, and replace the caching
by an explicit tiled sorting step to extract coherence, while keep-
ing all data on chip. This reduces hardware complexity and allows
shading to be implicitly deferred until after rasterization, ensuring

ACM Transactions on Graphics, Vol. 32, No. 4, Article 141, Publication Date: July 2013

http://doi.acm.org/10.1145/2461912.2462022
http://portal.acm.org/ft_gateway.cfm?id=2462022&type=pdf


Input Triangles

Triangle A Triangle B
0 5
2 7

41
3 6

0 5
2 7

41
3 6

Pass 1:
Rasterize,
Z/S & Map

Shading space

x

y
Pass 2:
Sort IDs
& Shade

A7
A7

B2 B4

...

...

...

0

1

2

3

4

7

5

6

0 1 2 3 4 75 6

A 1 (2,6)
(3,5)A 1

A 2

A1
A1

A2

(4,6). . .

A 4

A4

(2,5)

xyID

A 7
A 7

(3,1)
(2,2)

B 2 (4,1)

B 4 (6,1)

...

...

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

key value

Tri A
quad #1

Tri A
quad #2

Tri B
quad #1

VS/PS

Shading

& Output

...

Figure 2: Our algorithm operates in two main passes. First, all opaque geometry is stochastically rasterized using z-buffering. Instead of
executing pixel shading, each visibility sample is mapped to shading space to compute a shading point identifier (SPID), which is stored to
the frame buffer. Second, all SPIDs are sorted, with the shading point as key and the frame buffer sub-pixel position (x, y) as value. This
generates a long list of coherent shading work, where triangles appear in submission order and shading quads are dispatched according to
a Morton order space-filling curve in shading space (due to our encoding of SPIDs, shown in Figure 4) to improve texture locality. Pixel
shading is performed on 2×2 pixel quads in order to allow finite differences to be used for texture derivatives, as usual. The result is written
out to the list of sub-pixel positions associated with each shading quad. In practice, this second pass is tiled to keep the data on chip while
sorting and shading. In this pass, we also render alpha tested or blended geometry, and perform fullscreen passes.

that only samples visible in the final image are shaded. Figure 2
shows an overview of our algorithm. As we will see, the SPID
data is highly coherent. Therefore, we devise two simple lossless
buffer compression methods that drastically reduce the bandwidth
required to store/load SPIDs. The SPIDs have also been designed
so that our sorting step generates shading work in primitive sub-
mission order with good spatial locality. Hence, even if shading is
deferred, it appears to the application as tiled forward rendering,
where state and shader changes are allowed.

Several recent papers exploit tiled forward rendering to cull shad-
ing work [Olsson and Assarsson 2011; Olsson et al. 2012; Harada
et al. 2012]. These methods should be seen as complements to
our technique as they reduce the cost of executing the pixel shader,
while we focus on reducing the number of shader executions. Other
methods for reducing the shading cost, such as adaptive shading
rates [Vaidyanathan et al. 2012] are also well-suited to integrate in
our architecture.

A key difference to previous decoupling techniques [Ragan-Kelley
et al. 2011; Liktor and Dachsbacher 2012] is that we do not use
a memoization cache during the main rendering pass, but instead
sort the shading points afterwards. This avoids the variability and
buffering requirements introduced by a cache. We also do not need
to execute a pixel shader to generate data for deferred shading; our
main rendering pass can be implemented entirely in fixed-function
hardware and proceeds without delays. To make sorting and shad-
ing efficient, we operate on tiles of SPIDs, which are loaded into on-
chip memory. This gives many of the benefits of sort-middle bin-
ning/tiling architectures, while avoiding the complexities and vari-
able memory requirements of triangle binning [Seiler et al. 2008].
Indeed, our architecture has a fixed memory footprint and pre-
dictable performance, as the number of SPIDs is constant and no
additional data is stored. We also support late shading of vertex
attributes only for visible triangles.

To evaluate the performance, we have built a detailed architectural
simulator that can analyze complete Direct3D 11 workloads. The
simulator includes a state-of-the-art hierarchical stochastic raster-
izer, decoupled sampling with adaptive shading rates [Vaidyanathan
et al. 2012], and cache simulators to measure depth and color buffer
bandwidth usage, including compression. To the best of our knowl-
edge, this represents the most accurate architectural simulation of
stochastic rasterization and decoupled sampling to date.

Our contributions can be succinctly summarized as:

• A novel tiled deferred shading architecture that natively sup-
ports decoupled sampling.

• An extensive architectural simulation of several different
pipelines for efficient stochastic rasterization and shading.

The rest of the paper is organized as follows. In Section 3, we
will give a more thorough overview of the system, followed by de-
tails in Section 4. Then, the architectural simulation and results are
discussed in Section 5 and 6, respectively, with some concluding
remarks in Section 7.

2 Related Work

We focus on graphics hardware pipelines that support workloads of
varying triangle sizes and perform shading during or after visibility
determination. As such, we will not discuss Reyes-style micropoly-
gon pipelines [Cook et al. 1987], where shading reuse is supported
by shading at the vertices prior to rasterization.

In traditional forward rendering pipelines, low shading rates can be
achieved by inserting an extra z-prepass, i.e., all opaque geometry
is rasterized first to prime the z-buffer and then a second time to
shade non-occluded samples. However, this comes at a high cost
as it nearly doubles the already high cost of stochastic rasteriza-
tion, and the geometry pipeline has to be executed twice. On the
other hand, conventional deferred shading [Deering et al. 1988;
Saito and Takahashi 1990] naturally avoids shading occluded ge-
ometry. However, those methods rely on storing a large G-buffer
(with normals, texture coordinates etc.) that is shaded by a single
über-shader, and they do not support decoupled sampling. Liktor
and Dachsbacher [2012] remove this limitation by storing an indi-
rect G-buffer. Similar to us, they store per-sample SPIDs, but their
method has the additional overhead of generating G-buffer entries.
In addition, they rely on a z-prepass or a compaction step to re-
move occluded samples, which we do not need; our SPIDs are self-
contained, i.e., they uniquely identify the primitive and location in
shading space.

Tiled rendering [Fuchs et al. 1989] has been used in many previous
systems to keep data on chip and reduce expensive memory band-
width. To determine what work needs to be performed for each
tile, a binning (sort-middle) step is often used, where the geometry

141:2        •        P. Clarberg et al.

ACM Transactions on Graphics, Vol. 32, No. 4, Article 141, Publication Date: July 2013



(x,y,u,v,t) → (bu,bv)
inside test:

Screen space

moving/defocused
triangle

Shading space

Map
sx

sy

(bu,bv) → (sx,sy)

(bu,bv)

Figure 3: We use decoupled sampling [Ragan-Kelley et al. 2011] to
transform visibility samples (left) from barycentric space to shading
space (right), where the shading coordinates, (sx, sy), are quan-
tized to the nearest shading point (red). Many visibility samples
map to the same shading point, enabling efficient shading reuse.

is preprocessed and stored to variable length per-tile work queues.
Our architecture differs in this regard, as our main rendering pass is
not tiled and we do not need binning, while the shading pass is tiled
to give the same benefits; our sorting step produces a work queue,
but in our case consisting of shading quads rather than triangles. In
commercially available graphics processors, the PowerVR architec-
ture appears to be the one that is most closely related to our work as
it performs tiled deferred rendering [Imagination Technologies Ltd.
2011], although it does not support decoupled sampling.

There are few architectural studies of hardware systems for stochas-
tic rasterization and shading. Akenine-Möller et al. [2007] present
simple bandwidth measurements, but at the time, no efficient
shading or rasterization methods were known. Ragan-Kelley
et al. [2011] present the most complete study for decoupled sam-
pling, which focuses on its shading cost, but also includes band-
width simulations. Munkberg et al. [2011] measure depth buffer
bandwidth, but their method only supports motion blur. None of the
papers have used buffer compression, which is important to reduce
the bandwidth for stochastic rendering [Andersson et al. 2011]. Our
measurements include both depth and color buffer bandwidth, with
occlusion culling and lossless buffer compression, and we use a
state-of-the-art hierarchical 5D rasterizer to get a coherent screen-
space traversal order.

3 Overview

Figure 2 summarizes our algorithm (see also Figure 7 for details).
The input is triangles with per-vertex motion (t) and/or lens shear
(u, v) parameters. For each sample that hits the moving/defocused
triangle, the rasterizer computes barycentric coordinates, (bu, bv),
and depth, z. Samples that pass the depth test are mapped to shad-
ing space exactly as in previous work [Ragan-Kelley et al. 2011].
This is illustrated in Figure 3. The choice of shading space is or-
thogonal to our algorithm. We generally use either a canonical
screen-space aligned pixel grid over the triangle at the center of lens
and time, which gives results equivalent to MSAA for non-blurred
geometry, or a more advanced method for adapting the shading grid
to the local frequency content [Vaidyanathan et al. 2012].

For each mapped visibility sample, a shading point identifier
(SPID) that globally and uniquely identifies the combination of
primitive and shading coordinate is computed, and written to the
frame buffer. Hence, when the first pass finishes, the SPIDs stored
in the frame buffer represent the sparse set of primitives and asso-
ciated shading quads that will be needed to compute the color of
each sample that is visible in the final image. Note that the same
identifier will (hopefully) be assigned to many visibility samples,
as this ensures the same shaded value will be reused.
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Figure 4: The higher part (MSB) of a shading point identifier indi-
cates which primitive the shading point belongs to, while the lower
part stores the quantized position in shading space, (sx, sy), using
n bits per x, y-component encoded in Morton (Z-)order, i.e., their
bits are interleaved, where six denotes the ith bit of sx. In this en-
coding, the two LSBs represent the position in the 2×2 shading
quad, while the higher bits uniquely identify the shading quad. By
sequentially sorting all SPIDs, shading quads are found in prim-
itive order with all samples that belong to the same quad packed
together, as shown on the right in Figure 2.

Although there are many duplicates, matching SPIDs will generally
be spatially spread out depending on the amount of blur and the ge-
ometry. Therefore, to generate a compact list of coherent shading
work in the second pass, we start by sequentially sorting the SPIDs
using radix sort. Sorting is somewhat of a brute force solution,
but attractive from a hardware point of view. Since the working
set is a fixed, constant number of SPIDs, the sort algorithm can be
efficiently implemented as a hardware unit operating against a ded-
icated on-chip memory buffer. The resolution and target frame rate
determine its necessary throughput. In our simulations, we assume
screen-space aligned tiles of a certain size, e.g., 128 × 128 pixels,
although other partitionings are possible.

Due to the sorting step, the encoding of the SPIDs is a critical com-
ponent — it determines in which order shading work is generated.
With the encoding shown in Figure 4, primitives are shaded in sub-
mission order using a space-filling curve in shading space to max-
imize texture and shading locality, which has been our goal. The
algorithm proceeds by scanning the sorted list of SPIDs using a
simple state machine; whenever a new primitive is found, its ver-
tex attributes are shaded and interpolation setup performed (only
the positions were needed before). This is very similar to how the
standard 3D pipeline normally operates. For each unique shading
quad found, the pixel shader is dispatched to compute its colors.
This step also reuses existing hardware. The main difference is that
the rasterizer is inactive (or free to work on other tasks), since we
obtain our shading work from the sorted list of SPIDs instead.

Whenever a quad finishes pixel shading, its result is scattered to the
list of visibility samples associated with the shading quad. These
are found in order as a payload to the sorted shading points (c.f., the
right side of Figure 2). The hardware thus only needs to keep track
of a starting pointer and a counter for each shading quad in flight.
Also note that since all visibility samples are known prior to shad-
ing, it would be possible to let the shader access this information in
order to perform per-sample operations. This is something that is
not possible in previous cache-based decoupled sampling methods,
as they dispatch shading immediately upon cache misses.

To keep external memory bandwidth usage at a minimum, the tile
populated with colors is kept on chip until it is ready to be resolved
to a single-sampled surface and written out to main memory. This
summarizes the key ideas of our architecture. In the following sec-
tions, the implementation and simulation of the complete system is
described, including some extensions.

A Sort-based Deferred Shading Architecture for Decoupled Sampling        •        141:3
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4 System Details

In this section, we will discuss the details of how the ideas described
in Section 3 are transformed into a practical system that supports
real workloads. To help the reader, Figure 7 shows an architec-
tural comparison between the standard forward rendering pipeline,
and both cache-based and our sort-based architecture for decoupled
sampling. We denote the first phase of our algorithm the frontend,
and the second phase the backend.

4.1 Frontend Pipeline

All three pipelines share nearly the same geometry pipeline with
a standard input assembler (IA) and vertex shader (VS). They also
share the same rasterizer and depth/stencil unit (Z/S). It is also pos-
sible to support a geometry shader and tessellation (not shown in
the figure). The only difference is that our architecture only needs
to compute the vertex positions in the frontend. It may therefore be
worthwhile to compile a specialized position-only vertex shader for
this purpose, where the computations of other vertex attributes have
been removed. In the decoupled pipelines, each visibility sample is
mapped to shading space, but after this, the functionality diverges;
we compute and store SPIDs for all samples. The bandwidth usage
for this, although writing multisampled data, is not particularly high
as the SPIDs are highly coherent and therefore easy to compress.

4.2 Buffer Compression for Shading Point IDs

Lossless buffer compression is commonly used to reduce band-
width usage in graphics processors (see the survey by Hasselgren
et al. [2006] for an introduction). The data is typically arranged in
blocks of a certain size, which are stored uncompressed in the L1
cache. When a block is evicted, it is speculatively compressed, or
stored uncompressed to memory (or to the next level cache) if the
compression fails to reduce its size. By operating over blocks that
are a multiple N of the bus width, it is thus possible to achieve a
maximum compression ratio of N:1. The configurations we use are
listed in Section 5.3. Note that the buffer is always allocated at its
uncompressed size, but bandwidth usage to it is reduced.

We encode SPIDs using 32 bits each for the primitive IDs and Mor-
ton order shading coordinates, which allows up to 4.3 · 109 prim-
itives per frame (assuming a sequential assignment of IDs) and a
64k × 64k pixel shading grid. The exact widths of these fields
are not critical as it is the entropy of the data, not its size, that de-
termines the actual bandwidth usage. We store the two values in
separate 32-bit uint buffers, which are individually compressed.

The characteristics of the data differ a bit; the primitive IDs are
by nature very coherent, as a block often contains samples from
adjacent primitives, in which case the primitive IDs span only a
small range. An exception is when a block contains a surface
that only partially covers the background. In this case, there are
two (or more) distinct ranges of IDs. Inspired by the success of
offset compression for both depth and color data [Hasselgren and
Akenine-Möller 2006; Rasmusson et al. 2007], we found that a
simple min/max offset codec (see Figure 5 left) often works very
well. The shading coordinates are also quite coherent thanks to our
Morton order encoding, but there is a risk of larger gaps. How-
ever, as decoupled sampling maps many visibility samples to the
same shading coordinate, there are in many cases a limited set of
unique shading coordinates within a block, especially if adaptive
sampling [Vaidyanathan et al. 2012] is used to reduce shading in
blurry regions. To handle this, we have designed a codec that stores
a palette of the unique values in the block, and uses a few per-
sample index bits to address into this. The palette itself is offset-
encoded to save bits (see Figure 5 right).

Sample

PaletteOffset

Va
lu

e

Sample

Va
lu

e

Figure 5: The left figure illustrates a min/max offset codec, which
handles compression of the primitive IDs particularly well. For
shading coordinates, we have designed a simple palette-based off-
set codec, which stores per-sample indices into a small palette of
offset-encoded unique values.

The two codecs complement each other well, as the palette codec
handles blocks with few values but large ranges, while the min/max
offset codec handles blocks with many values in small ranges. In
our suite of test scenes, their combination reduces the bandwidth
usage for SPID data to 35–40% of the uncompressed bandwidth,
i.e., effectively transferring 22–26 bits per SPID, on average.

4.3 Tiled Shading Backend

Our tiled shading backend performs the operations described in the
lower half of Figure 7c. The input is a tile of the fullscreen SPID
buffer generated in phase one, which is sorted, scanned, and shaded.

Sort The sort algorithm is intended to be implemented as a fixed-
function unit that operates against a dedicated on-chip buffer. Each
key-value pair consists of the SPID as key (64 bits) and the sam-
ple position within the tile as value (m bits). For example, with
1282 pixel tiles and 16 samples per pixel, m=18. The tile buffer
thus needs to hold 2.6 MB if sorting is done in-place, and the total
amount of data that needs to be sorted at 1280×720 pixels resolu-
tion is 144 MB (uncompressed). Our algorithm is not sensitive to
the choice of sort algorithm, i.e., it does not have to be comparison-
based or stable, as the order of samples with matching SPIDs does
not matter. The memory access patterns are more important, as it is
desirable to minimize the on-chip bandwidth usage to the tile buffer.

In a prototype implementation, we use least-significant digit (LSD)
radix sort with digits of k = 8 bits. The streaming nature of radix
sort allows buffer compression to be used also in this step. For each
k bits of the sorting key, the algorithm makes a first pass to build
a histogram, and a second pass to shuffle the data according to a
prefix sum over the histogram. By choosing a memory layout par-
titioned into k-bit planes, the first pass can thus be implemented
to only read the specific data it needs for histogram computation.
As a further optimization, when loading a tile from memory, it is
possible to detect the number of significant bits in the primitive ID
and shading coordinate fields. This is determined by the number of
primitives and their size in shading space. Very often the higher or-
der bits are not used. In practice, we therefore need 4–5 sort passes,
which with compression consume in the order of 0.5 GB of on-chip
memory bandwidth (read+write) per frame. The main drawback of
this approach is that it requires a second on-chip tile buffer to ping-
pong the data during sorting. In the future, it would be interesting
to explore in-place sort algorithms suitable for hardware.

Scan After sorting the SPIDs, the list is sequentially scanned to
find shading work. Conceptually, this is implemented as a simple
state machine that looks for new primitives and/or shading quads.
For each new primitive, the hardware needs to lookup the associated
vertices in order to perform vertex position and attribute shading. If
there was only a single draw call, this would simply be a matter
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of accessing the corresponding vertex and index buffers at the right
position. However, it is our goal to support complete modern graph-
ics APIs, e.g., Direct3D 11, where a command buffer specifies all
rendering operations and their associated state.

We propose a simple solution, where the command buffer is re-
processed for each tile, but the hardware skips state changes and
draw calls that are not needed for the current tile. For example,
if no SPIDs with primitive IDs within the range of a draw call are
found, it is skipped, otherwise the relevant vertices are shaded (via a
standard vertex cache to enable reuse between primitives). See the
flowchart in Figure 6. Another option is that the application/driver
creates optimized per-tile command buffers. In this case, the ap-
plication is aware of the fact that the hardware internally performs
tiled rendering and can exploit this by providing specialized shaders
to cull shading work etc., similar to recent tiled forward rendering
methods [Olsson and Assarsson 2011; Harada et al. 2012].

Things get slightly more complex if the frontend contains geometry
expansion, e.g., tessellation. In this case, a single global primitive
ID is not appropriate, and it is better to define the SPIDs based
on draw call, patch, and triangle-in-patch IDs. This enables re-
tessellation of patches with one or more visible samples in the back-
end. We include one test scene with tessellation to demonstrate the
feasibility of this. However, there is room for improving the process
by using more advanced bookkeeping mechanisms.

Pixel Shading All pixel shading is dispatched as 2 × 2 shad-
ing quads to support shader derivatives through finite differences,
which is standard in current GPUs. In the standard pipeline, shad-
ing quads directly map to quads on the screen, while with decou-
pled sampling they exist in shading space. In the latter case, the
shading coordinates first have to be mapped back to barycentrics
before attribute interpolation [Ragan-Kelley et al. 2011]. With our
algorithm, shading quads will be dispatched according to a Morton
order space-filling curve in shading space, while with cache-based
decoupling, they appear in a more unpredictable fashion. Also,
since we are already operating on tiles, it is natural to keep the pixel
shader output in an on-chip buffer until we are done with rendering
the tile. This drastically reduces the memory bandwidth usage for
our architecture. The size of this buffer depends on the tile size,
sampling rate, and color buffer format. For example, with a 16-bit
RGBA float format and 1282 pixel tiles at 16×, the output buffer is
2.0 MB, which seems reasonable given the large savings it provides.
In our implementation, this fits within the extra tile buffer that was
needed for radix sort, which is no longer used after sorting.

Note that, since each shading quad has an associated list of vis-
ibility samples, we can support per-sample operations even with
decoupled sampling enabled. One example would be to access
per-sample/pixel data structures using general read/write accesses
or atomic operations, i.e., unordered access views (UAVs) in Di-
rect3D 11. This feature would be difficult to support with cache-
based decoupled sampling [Ragan-Kelley et al. 2011] since the ex-
act set of visibility samples is not known at the time of shading.

Alpha Blending and Post-Processing After the backend com-
pletes shading of the SPIDs, the output buffer holds the color of
all non-transparent geometry. Note that since frame buffer blend-
ing operations cannot be supported with deferred shading (as only
the frontmost visible surface is shaded), any additional passes that
require alpha blending must be rendered last. This is done tiled,
on top of the output buffer, using existing forward rendering meth-
ods [Ragan-Kelley et al. 2011]. These passes may include, for ex-
ample, foliage, decals, lens flare, and other post-processing effects.
In this category, we also include any passes that change the output
coverage mask, e.g., through alpha testing or alpha-to-coverage.
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Figure 6: The flowchart describes the operations performed in the
shading backend. Black arrows represent control flow, while blue
denotes data. Since all shading work (within a tile) follows in prim-
itive submission order, we support state changes (e.g., shaders, re-
sources etc.), unlike traditional deferred rendering. For each draw
call, we proceed with shading its sparse set of vertices and shading
quads, before switching back to looking for new commands. The
command buffer is provided by the graphics driver, as usual.

4.4 Discussion

An alternative to our tiled deferred shading would be to perform
a z-prepass before rendering the main pass with shading enabled.
However, as stochastic rasterization is still quite computationally
expensive, both due to the high sampling rates and the relatively
high cost of 5D sample tests, we believe it is desirable to avoid any
extra rasterization passes. To reach the same low bandwidth usage,
the complexity and variable memory footprint of triangle binning
also has to be taken into account. Another alternative would be to
use a shading cache instead of an explicit sorting step in a deferred
architecture like ours. The drawback would be that shading quads
are generated in an arbitrary order from many triangles in parallel,
making state changes (e.g., swapping shaders), late vertex attribute
shading, and interpolation setup difficult or impossible.

Conceptually, our deferred shading pass operates very similar to
the current graphics pipeline, with the difference that the trian-
gle traversal is replaced by sequentially scanning a sorted list of
shading points. Both vertex shading, interpolation setup, and pixel
shader dispatch operate nearly identically to the current pipeline.
In some aspects, our architecture may even simplify the pipeline.
For example, during rasterization of the main pass, we do not have
to worry about pixel shader execution, making a streamlined im-
plementation easier. The cost of adding hardware for the fixed-
function sorting unit and associated buffers is offset by the large
decrease in off-chip bandwidth. In summary, we believe that our
sort-based tiled deferred architecture provides many unique bene-
fits that are otherwise hard to get.

5 Architectural Simulator

We have implemented an architectural simulator based on a feature-
complete Direct3D 11 compliant software driver, which has been
extended to support hierarchical stochastic rasterization and decou-
pled sampling. The simulator has been instrumented to measure the
rasterization and shading costs, as well as extended with cache sim-
ulators for frame buffer memory bandwidth measurements. We can
simulate all three graphics pipelines shown in Figure 7. The simula-
tor also supports adding an automatic z-prepass and tiled rendering.
In the following, we will discuss the different parts of the simulator,
in order to make our results reproducible.
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Figure 7: In (a) the standard forward rendering pipeline with MSAA of current GPUs is shown. This is extended in (b) with cache-based
decoupled sampling [Ragan-Kelley et al. 2011], which shares the same geometry pipeline, but adds the ability to map visibility samples to
shading space, and cache logic to lazily shade and reuse shading in the backend. Our architecture in (c) splits the work in two phases, where
all rasterization and mapping of samples takes place in the first phase, and all pixel shading (PS) in the second. In our simulations, we run
the first phase only once (fullscreen) and the second phase tiled to save off-chip bandwidth for the color buffer, but other configurations are
possible. The key innovation is the ability to sort and scan the generated SPIDs, which enables deferring vertex attribute shading, triangle
interpolation setup, and most importantly, pixel shading to after visibility determination. Note that, thanks to the sorting step, each shading
quad has an associated array of unique visibility sample positions, so the output merger (OM) does not have to deal with write conflicts.

5.1 Rasterization

We use a state-of-the-art hierarchical stochastic rasterizer that ef-
ficiently reduces the number of sample coverage tests and pro-
vides cache coherent traversal. As part of the triangle setup, we
perform motion and defocus aware view frustum culling [Laine
and Karras 2011b] and backface culling [Munkberg and Akenine-
Möller 2011]. During traversal, we cull moving and defocused tri-
angles against each screen space tile using using the two tests in-
troduced by Laine et al. [2011] and a 5D linearized edge equation
test [Munkberg and Akenine-Möller 2012]. Tiles are traversed in
Morton order for good spatial locality, and we use two hierarchical
levels: 8×8 pixels and 2×2 pixels. The rasterizer uses an optimized
5D sample test [Laine and Karras 2011a] and supports arbitrary
sampling patterns in xyuvt. Currently, a 5D Sobol pattern [Joe and
Kuo 2008] is used.

As an example, averaged over the 3000 frames of the CITADEL ani-
mation (see Section 6) rendered at 16 samples/pixel, the operations
are divided between triangle setup (2%), tile tests (15%), sample
coverage tests (68%), and barycentric and depth interpolation for
sample hits (15%). The rasterizer has an average sample test effi-
ciency (STE) of 56% in this example, and the average total cost is
4.5 Gops/frame.

5.2 Pixel Shading

In our simulator, shaders are specified as Direct3D 11 bytecode
(compiled from HLSL by the application). For the purpose of gath-
ering statistics, each shaded quad is counted as four shader exe-
cutions, i.e., four shaded pixels, and we measure all costs at this
granularity as the hardware cannot shade partial quads. To generate
false color images to illustrate the shading cost, we divide the cost
by the number of visibility samples each shading quad is used for,
and scatter the resulting cost to those samples.

5.3 Bandwidth Simulation

We focus on measuring the total frame buffer memory bandwidth,
i.e., the bandwidth to all depth and color buffers. This is done by
tracking all memory accesses to those resources, including accesses
due to non-stochastically rendered geometry and fullscreen post-
processing passes. The SPID data in our algorithm is stored as two
color buffers in 32-bit uint format, as discussed in Section 4.2.

The simulator uses separate L1 caches for depth and color data, as
is common practice. To get realistic bandwidth estimates, both the
depth and color pipelines include lossless buffer compression. For
this purpose, all depth/color data is arranged in blocks of 256 bytes
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CITADEL1 (frame 230) CITADEL2 (frame 1660) CITADEL3 (frame 2905)

SUBD (frame 196) SPONZA ARENA

Figure 8: Our selection of test scenes, to which we have added motion and defocus blur; CITADEL1–3 are three different frames from a
benchmark for Unreal Engine 3 for mobile devices, courtesy of Epic Games, Inc. SUBD is an example from the Microsoft DirectX SDK (June
2010) that uses tessellation, SPONZA is the well-known Atrium Sponza Palace by Marko Dabrovic, and ARENA is a test scene courtesy of
Intel Corporation, featuring animated dragons and more complex shaders.

and stored uncompressed in the L1 caches. The memory bus is
assumed to be 64 bytes wide in all measurements, which enables a
maximum compression of 4:1. All parameters are configurable in
our simulator, but these numbers are in line with typical hardware
architectures and published studies. Note that the size of a block in
pixels depends on the memory layout, data format, and number of
samples per pixel used for a resource.

Depth Buffer Bandwidth We model a typical depth/stencil test-
ing unit (denoted Z/S in Figure 7) that resembles those of modern
graphics processors. For all measurements, we use hierarchical oc-
clusion culling [Morein 2000] with one zmax-value per block. This
data is kept in a block header, which is stored in a separate small
control surface. The header also includes a few control bits and
a clear mask, i.e., a bit mask that indicates with one bit per sam-
ple if the depth value is cleared or has been written. Both of these
optimizations significantly reduce the memory read bandwidth as
many depth tests can be answered without accessing the main depth
buffer. The bandwidth to the control surface is modeled through a
separate smaller cache, where multiple block headers are packed
into 64-byte cache lines and written uncompressed to memory.

For the main depth data, we use depth offset compression [Hassel-
gren and Akenine-Möller 2006], which has recently been found to
work very well for stochastic rendering [Andersson et al. 2011].
Our findings confirm this result. In our implementation, we also
take advantage of the clear mask to only encode offsets for non-
cleared samples, which helps improve the compression ratios in the
beginning of the rendering. The depth data cache was chosen to
be 64 kB, following Andersson et al. [2011], while the cache for
control surfaces is 32 kB to allow a larger region of the screen to be
cached (our headers are also larger due to the clear mask).

Color Buffer Bandwidth In our simulations, render targets are
backed by a 128 kB color cache. While even larger caches would
be beneficial, the cost of die area, current leakage, and latency tol-
erance limits the capacity in practice. For each block of color data,
two bits of control data are stored in a separate control surface, indi-

cating whether the block is cleared, compressed, or uncompressed.
Indicating cleared blocks reduces bandwidth usage at the beginning
of rendering to each render target. The control surface constitutes a
negligible part of bandwidth usage, and is therefore omitted.

Color data can be compressed with either of three simulated codecs,
and compressed blocks begin with four bits indicating which codec
was used as well as the compressed size. The primary codec em-
ploys offset compression [Rasmusson et al. 2007] using a single
reference point. In addition to this, the two codecs described in Sec-
tion 4.2 are applied to scalar integer buffers. For each evicted block,
all applicable encoders try to compress the data, and the smallest of
the resulting data blocks is written to memory. This approach is
standard practice in buffer compression.

5.4 Limitations and Extensions

Our simulator runs sequentially and does not model the concur-
rency issues of actual graphics hardware pipelines, e.g., there would
normally be multiple shading quads in flight. For this reason, we
only simulate the first level of caches, which are accessed by a sin-
gle unit at the time. However, a real implementation would likely
include a memory hierarchy with multiple levels of shared caches.
To model this in a meaningful way, we would have to perform mem-
ory simulations at all steps of the pipeline, i.e., include vertex, in-
dex, constant buffers, and so on. This was left out to limit scope,
which seems to be a common tradeoff. In fact, we have not seen any
published full system simulations of modern graphics pipelines.

Last, it is unclear how different system costs relate, i.e., rasteriza-
tion, shading, and bandwidth, as it depends very much on the spe-
cific hardware implementation and workloads. Hence, we present
the numbers separately to let the reader make their own inter-
pretations. It should be noted that it may be possible to fur-
ther reduce the bandwidth by, e.g., using time-dependent occlusion
culling [Akenine-Möller et al. 2007; Boulos et al. 2010] and better
color buffer compression schemes [Ström et al. 2008]. We expect
such improvements to have a positive impact on all algorithms.
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JRK JRK + z-prepass Our algorithm

Figure 9: The average per pixel shading rate for CITADEL3 and SPONZA using (left) forward rendering with cache-based decoupled
sampling (JRK) [Ragan-Kelley et al. 2011], and (middle) the same approach but with a z-prepass added. Our algorithm (right) achieves
nearly the same low shading rate, but without the extra rasterization cost and while consuming much less off-chip bandwidth.
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Figure 10: The average bandwidth usage (left) and per pixel shading rate (right) for our test scenes. Our algorithm consumes significantly
less bandwidth by keeping the data on chip and achieves nearly the same low shading rate as decoupled sampling with a z-prepass (JRK+Z).

6 Results

To quantify the benefits of our algorithm compared to the alterna-
tives, we have simulated several different Direct3D 11 workloads.
Figure 8 shows our selection of test scenes. In particular, we em-
phasize the CITADEL benchmark scene, which during its anima-
tion features several interesting environments, both indoors and out-
doors, with varying amounts of blur. It also includes multiple post-
processing passes for lens flare, fog, ambient occlusion etc., which
have been included in our bandwidth measurements.1

All results were generated at 1280× 720 pixels resolution using
16 stochastic samples in xyuvt per pixel. This sampling rate was
chosen to provide acceptable image quality for both motion blur
and depth of field, assuming the simple box filter of current GPUs.
Better reconstruction filters are expected to lower this requirement,
but robust real-time filters for the combined 5D problem is still an
area of active research [Shirley et al. 2011; Lehtinen et al. 2011].

We compare our algorithm against cache-based decoupled sam-
pling (JRK) and optionally include a z-prepass (JRK+Z). We have
omitted statistics for standard MSAA, as in the presence of blur,
MSAA is substantially more expensive than our baseline (JRK). For
example, in the CITADEL trace, an MSAA-based approach shades
about twice as much as JRK, with a per-frame variation of 3.0–14.1

1We have replaced its original post-processing based solution for mo-
tion/defocus blur by stochastic rendering.

shader executions per pixel (JRK has 2.4–4.9). The accompanying
video shows per-frame shading rate heatmaps (including standard
MSAA). Figure 9 shows examples for two frames.

Figure 10 presents the color and depth bandwidth usage for our test
scenes. As expected, with a z-prepass (JRK+Z) there is a slight in-
crease in depth bandwidth usage, while the color buffer bandwidth
usage is reduced, for a net win. Our algorithm consumes signifi-
cantly less external bandwidth for most scenes. There are several
reasons; first, we avoid the extra z-prepass, and second, the SPIDs
are more coherent and easier to compress than color information.
Last, and very importantly, the implicit tiling allows the color data
to be kept on-chip longer, until after MSAA resolve.

Figure 10 also shows the shading rate, which is almost on par with
decoupled sampling with a z-prepass for all scenes. As with any
tiled rendering algorithm, there is some degree of bin spread [Seiler
et al. 2008], i.e., shading cannot be reused across tile boundaries.
This explains the slight increase in shading rate over JRK+Z. We
also include adaptive anisotropic shading (AAS) [Vaidyanathan
et al. 2012] versions of all algorithms, and we see that with AAS
enabled, the shading efficiency of JRK+Z and our algorithm is even
more similar. Finally, the rasterization cost for each test scene is
reported in Table 1. Note that our algorithm shades almost as ef-
ficiently at JRK+Z at about half the rasterization cost. The small
increase in cost over forward rendering (JRK) is due to our tiled
rasterization of alpha blended geometry, which slightly increases
the rasterization setup cost.
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Figure 11: The full CITADEL trace. For every 20th frame, we report bandwidth (C+Z) (upper left), rasterization cost (upper right) and the
number of shader executions per pixel (bottom left). Additionally, we show shading statistic with adaptive anisotropic shading (AAS) for all
algorithms (lower right). Our algorithm consumes less bandwidth and has low raster and shading cost. It also scales favorably with AAS.

CITADEL1 CITADEL2 CITADEL3 SPONZA SUBD ARENA

JRK 4.3 4.1 6.1 5.3 5.4 6.6
JRK+Z 7.9 7.5 11.2 10.6 10.9 12.9
Our 4.3 4.2 6.2 5.3 5.4 6.7

Table 1: The rasterization cost for our test scenes in Gops/frame.
Note that JRK+z-prepass has substantially higher cost.

In Figure 11, we report statistics for the full CITADEL trace. As
can be seen, the bandwidth, shading, and rasterization costs are low
and relatively stable throughout the animation. It is also interesting
to note that AAS efficiently counteracts the bin spread problem, as
the surfaces contributing the most to bin spread are also the most
sparsely shaded. Figure 12 illustrates the reduction in sensitivity
to tile size when employing adaptive shading rates. The effect is
visualized in Figure 13.

7 Conclusion

Decoupling of shading and visibility in the graphics pipeline is vital
to support stochastic sampling. In this paper, we have explored a
novel hardware architecture that gives the benefits of deferred shad-
ing, i.e., shading only what is visible, without inheriting the draw-
backs of G-buffer based approaches. Our main motivation comes
from minimizing the off-chip memory bandwidth usage, which is
very expensive in terms of power consumption. We also want to
keep the rasterization cost low by avoiding extra z-prepasses, since
the cost of stochastic rasterization is still a significant factor (in the
range of hundreds of Gops/second). Second, we want to reuse as
much as possible of the existing fixed-function units.

The presented architecture reaches these goals by rendering a
fullscreen buffer of shading point identifiers, and then working on
tiles to defer shading (of both vertex attributes and pixels) until last
in the pipeline, while still shading in primitive order. In summary,
we believe that our sort-based tiled deferred architecture provides
many unique benefits. One obvious next step is to focus on re-
ducing the number of samples per pixel that is necessary for good
image quality. Recent work on clever reconstruction filters show
great promise in this direction.
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Figure 12: The shading cost increases for small tile sizes with our
algorithm due to bin spread. Note that with adaptive anisotropic
shading (AAS), the bin spread effect is largely avoided.
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MÖLLER, T. 2012. Design and Novel Uses of Higher-
Dimensional Rasterization. In High Performance Graphics, 1–
11.

OLSSON, O., AND ASSARSSON, U. 2011. Tiled Shading. Journal
of Graphics, GPU, and Game Tools, 15, 4, 235–251.

OLSSON, O., BILLETER, M., AND ASSARSSON, U. 2012. Clus-
tered Deferred and Forward Shading. In High Performance
Graphics, 87–96.

RAGAN-KELLEY, J., LEHTINEN, J., CHEN, J., DOGGETT, M.,
AND DURAND, F. 2011. Decoupled Sampling for Graphics
Pipelines. ACM Transactions on Graphics, 30, 3, 17:1–17:17.

RASMUSSON, J., HASSELGREN, J., AND AKENINE-MÖLLER,
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